Identity + Policy Pattern
The Identity + Policy pattern combines secure identity with strict policy controls. This pattern is ideal for AI agents that need to operate autonomously while adhering to strict operational rules and compliance requirements.
Use Case: AI Trading Agent
This pattern demonstrates a self-contained AI agent that combines:
- AI for market analysis and strategy adaptation
- Strict trading limits with policy controls
- Machine learning with policy-enforced safety
- Complete audit trails of decisions
// AI Trading Agent - No agent communication needed
const tradingAgent = await secureConnect(
new LangChain.Agent({
name: "trading_agent",
llm: new OpenAI({ temperature: 0 }),
tools: [
marketSentimentAnalyzer, // Processes news, social media, market sentiment
patternRecognitionTool, // Identifies complex market patterns
adaptiveStrategyTool, // Learns and adjusts trading strategies
nlpFinancialAnalyzer, // Natural language processing of financial reports
marketRegimeDetector, // Identifies market regime changes
riskAssessmentTool // Risk evaluation with ML
]
}),
{
spiffe: {
trustDomain: "trading.finance.org"
},
policy: {
// Policy enforces safety while allowing intelligent decisions
initialPolicy: `
package aztp.authz
# Default deny
default allow = false
# Trading operation rules with ML context
allow {
# Verify operation type
input.action in ["analyze_market", "place_order", "modify_order"]
# Trading limits with risk context
input.payload.orderValue <= trading_limits[input.payload.instrument_type]
# ML-based risk evaluation
input.payload.base_risk_score <= 0.7
input.payload.sentiment_risk_score <= 0.8
input.payload.regime_risk_score <= 0.6
# Market hours with regime awareness
current_hour := time.clock(time.now_ns())[0]
market_hours[input.payload.market].start <= current_hour
current_hour < market_hours[input.payload.market].end
}
# Trading limits by instrument
trading_limits = {
"equity": 1000000,
"forex": 500000,
"crypto": 100000,
"derivatives": 750000
}
`
}
}
);
// Example of policy-controlled trading
async function executeTrade(order) {
// Market analysis and context gathering
const marketContext = await tradingAgent.analyzeMarketContext({
technicalPatterns: await patternRecognitionTool.analyze(),
marketSentiment: await marketSentimentAnalyzer.getCurrentSentiment(),
newsImpact: await nlpFinancialAnalyzer.processRecentNews(),
marketRegime: await marketRegimeDetector.getCurrentRegime()
});
// Policy check with risk assessment
const canTrade = await tradingAgent.can("place_order", {
instrument_type: order.instrument,
orderValue: order.value,
market: order.market,
base_risk_score: await calculateTraditionalRisk(order),
sentiment_risk_score: marketContext.sentimentRisk,
regime_risk_score: marketContext.regimeRisk,
market_regime: marketContext.currentRegime,
model_confidence: marketContext.confidenceScore
});
if (!canTrade) {
throw new Error("Trade not allowed under current policy and risk assessment");
}
// Execute trade with optimized parameters
return await tradingAgent.executeOrder({
order: {
...order,
execution_strategy: marketContext.optimalStrategy,
timing: marketContext.optimalTiming,
sizing: marketContext.recommendedSize
},
metadata: {
policy_check: canTrade,
market_context: marketContext,
model_confidence: marketContext.confidenceScore
}
});
}
Real-World Applications
-
Institutional Trading
- Market sentiment analysis
- Pattern recognition
- Adaptive strategy optimization
- NLP-based research
-
Portfolio Management
- Market regime detection
- Dynamic risk assessment
- Optimized rebalancing
- Sentiment-aware positioning
-
Market Making
- Intelligent price discovery
- Dynamic spread optimization
- Adaptive risk management
- Market impact prediction