Examples
Identity + Policy Pattern

Identity + Policy Pattern

The Identity + Policy pattern combines secure identity with strict policy controls. This pattern is ideal for AI agents that need to operate autonomously while adhering to strict operational rules and compliance requirements.

Use Case: AI Trading Agent

This pattern demonstrates a self-contained AI agent that combines:

  • AI for market analysis and strategy adaptation
  • Strict trading limits with policy controls
  • Machine learning with policy-enforced safety
  • Complete audit trails of decisions
// AI Trading Agent - No agent communication needed
const tradingAgent = await secureConnect(
  new LangChain.Agent({
    name: "trading_agent",
    llm: new OpenAI({ temperature: 0 }),
    tools: [
      marketSentimentAnalyzer,  // Processes news, social media, market sentiment
      patternRecognitionTool,   // Identifies complex market patterns
      adaptiveStrategyTool,     // Learns and adjusts trading strategies
      nlpFinancialAnalyzer,     // Natural language processing of financial reports
      marketRegimeDetector,     // Identifies market regime changes
      riskAssessmentTool        // Risk evaluation with ML
    ]
  }), 
  {
    spiffe: {
      trustDomain: "trading.finance.org"
    },
    policy: {
      // Policy enforces safety while allowing intelligent decisions
      initialPolicy: `
        package aztp.authz
 
        # Default deny
        default allow = false
 
        # Trading operation rules with ML context
        allow {
          # Verify operation type
          input.action in ["analyze_market", "place_order", "modify_order"]
          
          # Trading limits with risk context
          input.payload.orderValue <= trading_limits[input.payload.instrument_type]
          
          # ML-based risk evaluation
          input.payload.base_risk_score <= 0.7
          input.payload.sentiment_risk_score <= 0.8
          input.payload.regime_risk_score <= 0.6
          
          # Market hours with regime awareness
          current_hour := time.clock(time.now_ns())[0]
          market_hours[input.payload.market].start <= current_hour
          current_hour < market_hours[input.payload.market].end
        }
 
        # Trading limits by instrument
        trading_limits = {
          "equity": 1000000,
          "forex": 500000,
          "crypto": 100000,
          "derivatives": 750000
        }
      `
    }
  }
);
 
// Example of policy-controlled trading
async function executeTrade(order) {
  // Market analysis and context gathering
  const marketContext = await tradingAgent.analyzeMarketContext({
    technicalPatterns: await patternRecognitionTool.analyze(),
    marketSentiment: await marketSentimentAnalyzer.getCurrentSentiment(),
    newsImpact: await nlpFinancialAnalyzer.processRecentNews(),
    marketRegime: await marketRegimeDetector.getCurrentRegime()
  });
 
  // Policy check with risk assessment
  const canTrade = await tradingAgent.can("place_order", {
    instrument_type: order.instrument,
    orderValue: order.value,
    market: order.market,
    base_risk_score: await calculateTraditionalRisk(order),
    sentiment_risk_score: marketContext.sentimentRisk,
    regime_risk_score: marketContext.regimeRisk,
    market_regime: marketContext.currentRegime,
    model_confidence: marketContext.confidenceScore
  });
 
  if (!canTrade) {
    throw new Error("Trade not allowed under current policy and risk assessment");
  }
 
  // Execute trade with optimized parameters
  return await tradingAgent.executeOrder({
    order: {
      ...order,
      execution_strategy: marketContext.optimalStrategy,
      timing: marketContext.optimalTiming,
      sizing: marketContext.recommendedSize
    },
    metadata: {
      policy_check: canTrade,
      market_context: marketContext,
      model_confidence: marketContext.confidenceScore
    }
  });
}

Real-World Applications

  1. Institutional Trading

    • Market sentiment analysis
    • Pattern recognition
    • Adaptive strategy optimization
    • NLP-based research
  2. Portfolio Management

    • Market regime detection
    • Dynamic risk assessment
    • Optimized rebalancing
    • Sentiment-aware positioning
  3. Market Making

    • Intelligent price discovery
    • Dynamic spread optimization
    • Adaptive risk management
    • Market impact prediction